首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   700篇
  免费   49篇
  国内免费   14篇
化学   485篇
晶体学   7篇
力学   29篇
数学   105篇
物理学   137篇
  2023年   3篇
  2022年   17篇
  2021年   39篇
  2020年   34篇
  2019年   42篇
  2018年   48篇
  2017年   54篇
  2016年   60篇
  2015年   35篇
  2014年   35篇
  2013年   83篇
  2012年   73篇
  2011年   67篇
  2010年   37篇
  2009年   28篇
  2008年   14篇
  2007年   26篇
  2006年   16篇
  2005年   8篇
  2004年   13篇
  2003年   6篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1992年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1979年   2篇
排序方式: 共有763条查询结果,搜索用时 17 毫秒
751.
This research aimed to enhance the antibacterial activity of silver nanoparticles (AgNPs) synthesized from silver nitrate (AgNO3) using aloe vera extract. It was performed by means of incorporating AgNPs on an activated carbon nanoparticle (ACNPs) under ultrasonic agitation (40 kHz, 2 × 50 watt) for 30 min in an aqueous colloidal medium. The successful AgNPs synthesis was clarified with both Ultraviolet-Visible (UV-Vis) and Fourier Transform Infrared (FTIR) spectrophotometers. The successful AgNPs–ACNPs incorporation and its particle size analysis was performed using Transmission Electron Microscope (TEM). The brown color suspension generation and UV-Vis’s spectra maximum wavelength at around 480 nm confirmed the existence of AgNPs. The particle sizes of the produced AgNPs were about 5 to 10 nm in the majority number, which collectively surrounded the aloe vera extract secondary metabolites formed core-shell like nanostructure of 8.20 ± 2.05 nm in average size, while ACNPs themselves were about 20.10 ± 1.52 nm in average size formed particles cluster, and 48.00 ± 8.37 nm in average size as stacking of other particles. The antibacterial activity of the synthesized AgNPs and AgNPs-immobilized ACNPs was 57.58% and 63.64%, respectively (for E. coli); 61.25%, and 93.49%, respectively (for S. aureus). In addition, when the AgNPs-immobilized ACNPs material was coated on the cotton and polyester fabrics, the antibacterial activity of the materials changed, becoming 19.23% (cotton; E. coli), 31.73% (polyester; E. coli), 13.36% (cotton; S. aureus), 21.15% (polyester; S. aureus).  相似文献   
752.
Solvatochromic mixed-chelate copper(II) complexes, [Cu(Cl-acac)(diamine)]X (where Cl-acac = 3-chloroacetylacetonate ion, diamine = N,N′-dimethyl,N′-benzyl-1,2-diaminoethane and X = B(Ph)4, PF6, BF4 and ClO4), have been prepared. The complexes were characterized on the basis of elemental analysis, molar conductance, UV-Vis and IR spectroscopies. Single crystals of [Cu(Cl-acac)(diamine)(H2O)]PF6, complex 2, were also characterized by X-ray diffraction. The influence of the solvent polarity and counter ions on the νmax values of the d-d bands of the complexes have been investigated by means of visible spectroscopy. All the complexes demonstrated negative solvatochromism. A multi-parametric equation has been utilized to explain the solvent effect on the d-d transition of the complexes using SPSS/PC software. The stepwise multiple linear regression (SMLR) method demonstrated that the donor power of the solvent plays the most important role in the solvatochromism of the compounds. The relative donor power of the anions X was determined by visible spectra in the solvent dichloromethane.  相似文献   
753.
Peptidoglycan is the component of the bacterial cell wall that is essential for maintaining the shape and rigidity of the cell. As such, its polymeric structure, consisting of alternating units of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc), is also a target for the action of host defense enzymes, such as lysozymes. Many bacteria have developed methods of masking their cell wall from these environmental dangers through the addition of aglycon moieties that prevent recognition or sterically hinder the degradative action of exogenous enzymes that would otherwise prove detrimental to the cell. Peptidoglycan acetyl-transferases (Pat's) and O-acetylpeptidoglycan esterases (Ape's) are the enzymes responsible for the controlled addition and removal of acetate onto the C-6 hydroxyl group of MurNAc residues in peptidoglycan. Studies on Ape1, an O-acetylpeptidoglycan esterase found in Neisseria gonorrheae, have suggested that this enzyme is essential for bacterial viability and thus presents an attractive target for antibacterial design. Previous studies on Ape1 have been hindered by the fact that Ape1's natural substrate is an insoluble polymer. In this paper we outline the design, synthesis, and testing of the water-soluble di- and monosaccharide substrate analogues 1 and 2. Both 1 and 2 serve as substrates of Ape1 with k(cat)/K(M) values of (5.1 ± 1.7) × 10(3) M(-1) s(-1) and (3.1 ± 0.8) × 10(3) M(-1) s(-1), respectively. It was determined that the substitution of the GlcNAc residue in compound 1 with an O-benzyl group in compound 2 did not significantly decrease the enzyme's affinity for the monosaccharide. These findings are important as they demonstrate that the catalytic prowess of Ape1 is not dependent on its binding to a polymeric substrate. This ensures that small molecule transition state/intermediate analogues can also capture the transition state binding energy of Ape1 and potentially serve as potent inhibitors. The synthetic route to compounds 1 and 2 could readily be modified to allow for the installation of a wide variety of functional groups at the MurNAc C-6 position in both the mono- and disaccharide scaffolds. This will serve as a general method for the construction of Ape1 substrates and inhibitors.  相似文献   
754.
A new approach has been realized to construct a three‐dimensional doubly interpenetrated cubic metal–organic framework Zn2(PBA)2(BDC) ? (DMF)3(H2O)4 ( UTSA‐36 , HPBA=4‐(4‐pyridyl) benzoic acid, H2BDC=1,4‐benzenedicarboxylic acid) through the self‐assembly of the pyridylcarboxylate linker 4‐(4‐pyridyl) benzoate and bicarboxylate linker 1,4‐benzenedicarxylate with paddle‐wheel [Zn2(COO)4]. The activated UTSA‐36 a exhibits highly selective gas sorption of C2H6, C2H4 and C2H2 over CH4 with the Henry law’s selectivities of 11 to 25 in the temperature range of 273 to 296 K attributed to the unique 3D intersected pore structure of about 3.1 to 4.8 Å within the framework, indicating that UTSA‐36 a is a potentially very useful and promising microporous material for such industrially important separation of C2 hydrocarbons over methane.  相似文献   
755.
The present work has focused on the modification of multiwalled carbon nanotube with a ligand,l-(2-pyridylazo)-2-naphthol, and its potential application for the development of a new,simple and selective modified glassy carbon electrode for stripping voltammetric determination of Cd(Ⅱ).The analytical curve for Cd(Ⅱ) ions covered the linear range varying from 0.8 up to 220.4μgL-1.The limit of detection was found to be 0.1μgL-1,while the relative standard deviation(RSD) at 50.0μgL-1 was 1.8%(n=5).This modified electrode was successfully applied for determination of Cd(Ⅱ) in some water samples.  相似文献   
756.
A differential pulse anodic stripping voltammetric procedure was developed for the determination of trace amounts of iron(II) in the presence of iron(III) at a carbon paste electrode (CPE) modified with dithiodianiline and gold nanoparticle. At the pH working of 3.0, a wide concentration range from 0.1 nM to 100 nM was observed with the detection limit of 0.05 nM. The relative standard deviation for a solution containing 50 nM of iron(II) was found to be 3.11 % (n=9). Possible interferences from the coexisting ions were also investigated. The validity of the method and applicability of the sensor were successfully tested by determining of iron(II) in lentil, wheat seed and barley seed samples.  相似文献   
757.
A carbon‐paste electrode modified with 2,7‐bis(ferrocenyl ethyl)fluoren‐9‐one and carbon nanotubes was used for the sensitive voltammetric determination of levodopa (LD). The electrochemical response characteristics of the modified electrode toward LD, uric acid (UA) and folic acid (FA) were investigated. The results showed an efficient catalytic activity of the electrode for the electrooxidation of LD, which leads to lowering its overpotential by more than 320 mV. The modified electrode exhibits an efficient electron mediating behavior together with well‐separated oxidation peaks for LD, UA and FA. Also, the modified electrode was used for determination of LD in some real samples.  相似文献   
758.
In this paper, we study the tensile behavior of cylindrical rutile TiO2 nanowires, employing molecular dynamics (MD) simulation technique. The third-generation charge optimized many-body (COMB3) has been used for interatomic potential modeling. The influence of temperature and nanowire diameter on Young’s modulus is investigated. Our simulations exhibit the anisotropic behavior of Young’s modulus as a function of diameter for different crystallographic orientations. Although our results are in good accord with the existing results in [1 0 0] direction, Young’s modulus adds up monotonically with increasing the cross-sectional diameter of nanowire in [0 0 1] direction. It is found that Young’s modulus of the nanowires are lower (higher) than the bulk value for [0 0 1] ([1 0 0]) direction. Furthermore, simulation results also indicate that Young’s modulus of rutile TiO2 nanowire increases as a function of temperature for a given diameter, unexpectedly. The obtained results may be useful in the field of nanotechnology for optimizing mechanical performance to gain specific applications.  相似文献   
759.
Wave propagation modeling as a vital tool in seismology can be done via several different numerical methods among them are finite-difference, finite-element, and spectral-element methods (FDM, FEM and SEM). Some advanced applications in seismic exploration benefit the frequency domain modeling. Regarding flexibility in complex geological models and dealing with the free surface boundary condition, we studied the frequency domain acoustic wave equation using FEM and SEM. The results demonstrated that the frequency domain FEM and SEM have a good accuracy and numerical efficiency with the second order interpolation polynomials. Furthermore, we developed the second order Clayton and Engquist absorbing boundary condition (CE-ABC2) and compared it with the perfectly matched layer (PML) for the frequency domain FEM and SEM. In spite of PML method, CE-ABC2 does not add any additional computational cost to the modeling except assembling boundary matrices. As a result, considering CE-ABC2 is more efficient than PML for the frequency domain acoustic wave propagation modeling especially when computational cost is high and high-level absorbing performance is unnecessary.  相似文献   
760.
This paper reported a dual-mode probe for D-penicillamine on the basis of pH-mediated gold nanoparticles aggregation and fluorescence resonance energy transfer (FRET) from carbon dots. D-penicillamine is a zwitterionic compound and has different forms depending on specific pH ranges. The thiol group of D-penicillamine has high affinity towards the surface of gold nanoparticles and can replace other surface ligands. When pH values were close to its isoelectrical point (pH(I)), the D-penicillamine capped gold nanoparticles aggregated through hydrogen bonding or electrostatic interactions, resulting in the releasing of carbon dots from gold nanoparticles. The dual-mode probe consisted of fluorescent carbon dots and gold nanoparticles, and the fluorescence of carbon dots was quenched by the attached gold nanoparticles due to the FRET. Then, the fluorescence can be recovered in presence of D-penicillamine due to the gold nanoparticles aggregation in specific pH range. Under the optimum conditions, the probe has linear response for D-penicillamine in the 0.25–1.5 μM concentration range with a detection limit of 0.085 μM. This method provides a potential application in sensitive detection of D-penicillamine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号